AidedEyes

Our eyes collect a considerable amount of information when we use them to look at objects. In particular, eye movement allows us to gaze at an object and shows our level of interest in the object. In this research, we propose a method that involves real-time measurement of eye movement for human memory enhancement; the method employs gaze-indexed images captured using a video camera that is attached to the user’s glasses.

We apply this system to (1) fast object recognition by using a SURF descriptor that is limited to the gaze area and (2) descriptor matching of a past-images database. Face recognition by using haar-like object features and text logging by using OCR technology is also implemented. The combination of a low-resolution camera and a high-resolution, wide-angle camera is studied for high daily usability.

video

video

OLD Version

AIDED EYESWe present a prototype system with an infrared-based corneal limbus tracking method. Although the existing eye tracker systems track eye movement with high accuracy, they are not suitable for daily use because the mobility of these systems is incompatible with a high sampling rate. Our prototype has small phototransistors, infrared LEDs, and a video camera, which make it possible to attach the entire system to the glasses. Additionally, the accuracy of this method is compensated by combining image processing methods and contextual information, such as eye direction, for information extraction. We develop an information extraction system with real-time object recognition in the user’s visual attention area by using the prototype of an eye tracker and a head-mounted camera.

References

  • Yoshio Ishiguro, Adiyan Mujibiya, Takashi Miyaki and Jun Rekimoto, Aided Eyes: Eye Activity Sensing for Daily Life, The 1st Augmented Human International Conference (AH2010), Megève, France, 2010. PDF
  • [Video] Yoshio Ishiguro, Adiyan Mujibiya, Takashi Miyaki, and Jun Rekimoto, Aided Eyes: Eye Activity Sensing for Daily Life, The Eighth International Conference on Pervasive Computing (Pervasive 2010), Helsinki, Finland, 2010. (best video award)

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s